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SUMMARY 

The origin and mathematical properties of the split peak phenomenon are 
described for both linear and non-linear elution conditions. Through a series of 
computer calculations, the theoretical behavior of split peaks is predicted for a wide 
variety of conditions where chemical adsorption, as opposed to solute mass transfer, is 
the rate-limiting adsorption step. Our results, which derive from the fundamental 
solution of the non-linear chromatographic equations with an impulse input [s(t)], are 
found to be in excellent agreement with the recent numerical simulations of Hage and 
Walters. The fraction of solute eluting at the dead volume v) is found to be a complex 
function of both the flow-rate and the amount injected (C,). Although it is 
theoretically possible to use the split peak mass to derive values for the adsorption rate 
constant and the density of binding sites, this methodology is difficult and time- 
consuming to apply. Split peak theory may be useful, however, in engineering design 
computations where it is desired to maximize solute throughput, yet keep the 
non-retained fraction below a certain percentage of the total mass of solute applied to 
the column. Universal working curves for this purpose are presented and discussed, 
and the optimum throughput is found for each of several specified split peak fractions. 

INTRODUCTION 

One of the more curious phenomena in chromatography is the so-called “split 
peak”. These occur when adsorption is so slow, or the density of binding sites is so 
small, that a significant fraction of the solute may traverse the length of the column 
without adsorbing even once’. The probability of a solute making this passage is 
enhanced by higher flow-rates, and is completely independent of the rate of solute 
desorption from the stationary phase; the amount of solute eluting at the dead volume 
depends only on its probability of adsorbing during its residence in the column. 

Split peaks are found almost exclusively in protein and affinity chromatography, 
where both the solute and the immobilized ligand molecules tend to be large. and 
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adsorption kinetics and mass transfer tend to be slow. Split peaks are not useful in 
quantitative analysis or in preparative scale work; indeed, they are undesirable 
artifacts. They have been used, however, to make physico-chemical measurements; 
their mass -a convenient and precisely measurable quantity- is directly related to 
the density of binding sites on a particular adsorbent, as well as to the adsorption 
kinetics of these sitesz,3. 

Sportsman and Wilson’ were the first to make use of this fact in measuring the 
rate of formation of an antigen-antibody complex2. Recently, Hage et a1.3 used split 

peaks in an elegant study of the immobilization-dependent adsorption kinetics of 
Protein A3. They found that the chemical procedures used to immobilize the ligand 
had a significant effect on its adsorption kinetics. Their method of relating split peak 
mass to adsorption kinetics was, like Sportsman’s, based on the assumption of linear 
(“intinite dilution”) conditions. This has two undesirable consequences. First, linear 
elution conditions are all but unat?ainable in immobilized protein chromatography 
because ligand densities are simply too low; a detection system would not be able to 
measure precisely an “infinitely dilute” concentration of solute. Hence, experimental 
results need to be extrapolated to infinite dilution so that the linear theory may be 
properly applied. A further drawback to applying linear theory is that the density of 
binding sites must be known a priori in order to measure the adsorption rate constant. 
Each of these factors increases the number of experiments to be performed, thus 
diminishing the precision of the results. 

Split peaks were first described in a theoretical way by Giddings and Eyring’, 
long before they were observed in affinity chromatography. In providing a stochastic 
description of the chromatographic process under linear conditions, they found that 
there was a finite probability, given sufficiently extreme chromatographic conditions, 
that an otherwise retained solute could travel the length of a column without 
adsorbing. DeLisi et af.4 also examined linear split peak theory, and discussed its 
significance. It was only recently, however, that Hage and Walters5 examined 
non-linear split peak theory for the first time. They used a finite element numerical 
analysis scheme to quantitatively simulate split peak behavior under two sets of 
conditions: (1) adsorption being limited by the rate of solute diffusion through the 
stagnant fluid, and (2) adsorption being limited by the rate of chemical adsorption. 
They also developed guidelines whereby non-linear effects in split peak behavior can 
be minimized, and “infinite dilution” behavior extrapolated from non-linear data. 

In this article, we will examine the mathematical origin and behavior of split 
peaks in the adsorption-limited case, and discuss the difficulty of applying the 
appropriate theory to make physico-chemical measurements. If the physical param- 
eters of a system have been accurately obtained by alternative means, however, split 
peak theory can prove to be useful. This is demonstrated by design calculations which 
provide a quantitative guide to optimizing solute throughput at a specified split peak 

fraction. 

THEORY 

The non-linear system of equations which describes column overload under 
non-ideal conditions was solved for a delta function input to yield the following 
concentrationtime relationship at the column exit? 
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discussed elsewhere6. In the above equations, C and q represent the concentration of 
solute in the mobile and stationary phases, respectively, and Co represents the quantity 
of solute injected or, in mathematical parlance, the “strength” of the delta function 
input. This may be computed in the following manner: 

co = ; c, 
0 

C,, is the concentration of solute in a very narrow injection pulse, VP is the volume of 
that pulse, and V. is the dead volume of the column. The adsorption/desorption rate 
constants, k, and kd, are chemical constants; that is, we are assuming that a chemical 
process, as opposed to a mass transfer process, is the rate-limiting sorption step. So is 
the concentration of binding sites on the adsorbent, E is the porosity ratio, and to is the 
dead time of the column. All symbols are summarized in the symbols section. 

The profile of a non-linear chromatographic peak is fully described by three 
dimensionless groups, 7, k’, and KCo, and dimensionless time, y. Time is rendered 
dimensionless in this way in order to incorporate the initial condition that the column 
be empty; that is, nothing may elute prior to the dead time. This time “shift” is also 
essential to linearizing, and hence solving, the non-linear set of equations via the 
Thomas transformation7.8. 

The shifted time variable does, however, present a problem when solving the 
non-linear chromatographic equations for an impulse input. This problem arises 
because the solute is introduced onto the column as an infinitely high, infinitely narrow 
pulse at time equal to zero; this is in contradiction to our condition, implicit in the time 
“shift”, that the column be initially devoid of all solute. Thus it is not surprising that 
while eqn. 1 accurately describes the profile of the retained peak, the delta function 
term (at y = 0) does not correctly predict the split peak mass, except under linear 
conditions. 

This is an unfortunate. but necessary, consequence of solving the non-linear 
system of equations with a boundary condition that is infinitely discontinuous at time 
equal to zero. In the derivation of eqns. 1 and 2, it was necessary to develop an 
expression for the boundary condition at ,v = 0, and because of the delta function, it 
was necessary to take the limit as JJ approached zero6. Taking the limit from the 
positive direction yields solutions which are trivially equal to zero, while taking the 
limit from the negative direction yields the solutions in eqns. 1 and 2. It can be shown, 
however, that when integrated over time, eqn. 1 will yield a mass which is less than or 
equal to unity, and the “missing mass” is, in fact, the correct split peak mass. This is the 
approach we have taken to compute split peak mass in our numerical calculations. 
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NUMERICAL CALCULATIONS 

Two sets of computer calculations were carried out. In the first, the three 
chromatographic parameters (y, k’, and KC,J were varied over a wide range, and 
theoretical peaks with approximately 160 points were generated. Each peak was 
integrated by Simpson’s rule’, with the peak “beginning” being taken at y = 0, and the 
peak “end” being chosen as the point where the concentration fell below a threshold of 
lo-* times the peak maximum. The integrated mass was then subtracted from unity to 
yield the correct split peak mass. In all, X40 theoretical peaks were generated by using 
all possible combinations of the following chromatographic parameters: 

k’ = 1.0, 2.0, 4.0, 8.0, 12.0, 16.0, 20.0 
^r’ = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.0 
KC* = 0, 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.0, 2.0, 5.0, 10.0, 20.0 

In the second set of computer simulations, target values of the split peak mass 
were selected (e.g., 10% of the solute mass), and the results of the first simulation were 
used to predict which chromatographic parameters would yield the desired result. The 
parameter space was then searched until the targeted split peak mass was bracketed, 
whereupon a parabolic interpolation was performed in order to find the parameters 
which yielded the desired target value. The resulting parameters were then checked in 
eqn. 1, and if the split peak mass was not within 0.2% of the target value, the above 
procedure was repeated until this condition was met. By this method, 41 distinct 
parameter sets were obtained for each of the following split peak fractions: I%, 2%, 
5%, lo%, 20%, 30%, and 40%. The peak integration procedure used in the first set of 
simulations was also used in this set. 

All computations were carried out in double-precision Pascal on a Zenith-l 5 1 
microcomputer equipped with an 8087 coprocessor. 

RESULTS AND DISCUSSION 

In order to interpret the theoretical results generated by the first set of 
simulations, it is convenient to introduce two dimensionless groups: 

O1 = yk’ = k,Sosto (44 

O2 = yKCo = k,C,t, (4b) 

Of the 840 peaks generated in the first set of simulations, there were only 573 
unique combinations of d1 and ti2. For those peaks which had identical values of 8i 
and B2, but entirely different values of 7, k’, and KG,, the retained peak profiles differed 
widely in shape and breath -but the split peak mass was identical to at least fourteen 
significant figures. This observation validates our computational procedure, because 
neither @I nor o2 are dependent upon kd. The split peak effect must be independent of 
kd, for its size depends only on the probability of a solute udsoubing; the probability ofit 
desorbing is completely irrelevant to the size of the peak eluting at the dead volume. It 
therefore follows that the split peak effect can be completely described by the two 
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Fig. 1. Fraction of solute eluting at the dead volume as a function of both @I and oz. 

parameters, 6, and Bz, which incorporate slow chemical adsorption (via k,), the 
concentration of binding sites (,5&s), the flow-rate (through to), and the solute load 
(CO). Some of the data that were generated in the first set of simulations are presented 
in Fig. 1, and in alternative form in Fig. 2. Several features of these plots are instructive. 
First, the data plotted in Fig. 2 yield a plot which is virtually identical to one generated 
by Hage and Walters’ from numerical simulations. The slopes of all the lines in Fig. 
2 are equal to unity at small values of 6, r, while at large values, the lines become 
substantially curved. Again, these patterns in the data are identical to those found in 
the numerical work of Hage and Walters’. 

From Figs. 1 and 2, it is evident that the split peak mass, or fraction of solute 
eluting at the dead volume, is a very complex, non-linear function of Or and 19~. Herein 
lies the difficulty of using split peak theory to measure O1 and t51z experimentally, and 
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Fig. 2. Data from Fig. I plotted in alternative form to maintain consistency with ref. 5 
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thereby obtain k, and So. Simultaneous measurement ofthese parameters would require 
aseriesofexperimentsinwhichti, and!‘orO,werevaried,andexperimentalplotssimilarto 
Figs. 1 or 2 constructed. Lengthy and involved computer computations would then be 
required to match a theoretical working curve to the experimental curve. Alternatively, 
the binding site concentralion can be measured independently by chemical means, and 
thensplitpeakbehaviorcanbeextrapolatedtoin~nitedilutiontoyield~~;thishasbeenthe 
method employed by Hage and co-workers3.5. 

Another way of measuring these parameters is to fit retained peaks (or 
breakthrough curves) to theoretical profiles6.‘0P13. This method has two principal 
advantages. First, all three parameters (k,, kd, and S,) are accessible, as opposed to just 
two (k, and So); secondly, these parameters may be obtained simultaneously from UK+ 
chromatogram. Multiple runs, while desirable for assessing the precision and accuracy 
of the method, are not necessary for the actual measurement of the parameters. In 
addition, there arc practical reasons why the curve-fitting approach is to be preferred. 
The computations involved in the data analysis are no worse -and may even be less 
involved- than those required to fit working curves to experimental split peak plots. 
Also, the split peak method requires that a peak at the dead volume be accurately 
integrated; this requires that there be no unusual dead volume effects or unretained 
components that interfere with the split itself, and that the detector responds quickly 
enough. 

In preparative separations, the split peak effect is obviously an undesirable 
artifact. In an affinity chromatographic separation, for instance, a split peak would 
mean that a portion of the desired product would elute in the wash along with other 
unretained (and undesired) components. It is therefore important to have a fun- 
damental understanding of how the effect may be controlled, even if it is not possible 
-or practical- to use it in making physico-chemical measurements. For the purpose 
of optimizing solute throughput in a new affinity system, such as that recently reported 
by Hage and Walters 14, it would be useful to understand how throughput is related to 
the fraction of unretained solute. If the throughput is taken to be the ratio Co/lo, then 
from eqns. 4a and 4b, we may define a dimensionless throughput parameter: 

TP+ co 
I k(So~)2fo 

(5) 

The second set of simulations is summarized in Fig. 3. The region below each curve 
represents all combinations of 0, and HZ where the split peak fraction is less than the 
percentage indicated on the graph. The accuracy of these plots rests upon the 
assumption that chemical processes are slow relative to mass transfer, and upon prior 
knowledge of k, and So. If these parameters have been accurately determined by 
alternative means, then plots such as those depicted in Fig. 3 may be used to adjust f0 
(via the flow-rate) and Co (the solute load) to achieve optimum solute throughput at 
a given split peak fraction. 

At large values of 0,. all of the curves in Fig. 3 approach a straight line with 
a limiting slope which is greater than unity. If a small split peak fraction is specified 
(e.g., 1%) this slope is very close to unity, while for large split fractions (e.g., 40%), the 
slope is much larger (close to 2 in the latter case). It must be remembered that both t), 
and d2 are proportional to fo, the dead time of the column. This means that an 
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Fig. 3. Selected values of the split peak fraction, and the parameter values which give these fractions. The 
intersection of the optimum line with the curves represents the point of optimal solute throughput for 
a specified fraction. See text for details. 

experimental point on any curve in Fig. 3 would move along a line with slope equal to 
unity as the flow-rate is changed. A point that was on, say, the 1% line would then find 
itself slightly above the line after a flow-rate increase; that is, the split peak fraction 
would be greater than the desired amount. A downward adjustment in the solute load 
(CO in 0,) would then be required to bring the point back onto the curve. In general, the 
smaller the split peak fraction that is specified, the less will CO need downward 
adjustment to compensate for a flow-rate increase. 

This raises the question as to how to adjust the sample load and flow-rate to 
achieve the maximum separation productivity. To find the optimum thoughput for 
each of the indicated split peak fractions in Fig. 3, eqn. 5 was used to compute the 
dimensionless throughput for each of the 41 points on each curve. A distinct maximum 
was found on each curve; it was pinpointed by means of a parabolic interpolation 
between the three points with the highest throughput. The optimum points on each 
curve are given in Table I, and are connected in Fig. 3 with the solid curve labeled 
“optimum”. 

TABLE I 

VALUES OF 8, AND Ii2 REQUIRED TO ACHIEVE THE MAXIMUM POSSIBLE SOLUTE 
THROUGHPUT AT VARIOUS SPLIT PEAK FRACTIONS 

f(X) 0, (opt) NL iop1) TP* (1 - .fjTP 

1.00 7.945 4.975 0.0788 0.0780 
2.00 6.762 4.383 0.0959 0.0940 
5.00 5.203 3.608 0.1333 0.1266 

10.0 4.025 3.038 0.1875 0.1688 
20.0 2.834 2.478 0.3085 0.2468 
30.0 2.126 2.153 0.4762 0.3333 
40.0 1.628 1.947 0.7342 0.4405 

* TP is the dimensionless solute throughput defined in eqn. 5. 
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TABLE II 

NET THROUGHPUT AS A FUNCTION OF SOLUTE LOAD 

Flow-rate is constant. 

Line* 

A 

f !%j TP iI --flTP 

1.00 0.0657 0.0650 
10.0 0.1597 0.1438 
40.0 0.2769 0.1662 

B 1 .oo 
10.0 
40.0 

l Refer to Fig. 3. 

0.0710 0.0703 
0.0977 0.0879 
0.1518 0.0911 

Two observations need to be made regarding the data in Table 1. First, the points 
of optimum throughput for the chosen split peak fractions lie on an almost perfect line 
(r = 0.9997879). It would therefore be possible to estimate the optimum flow-rate and 
sample load for uny desired split fraction in the range 1 to 40%, provided that the 
physico-chemical parameters of the system were known. The last column in Table I is 
also interesting; it suggests that net throughput can be improved by simply tolerating 
more split peak mass, and adjusting the operating parameters to the optimum point. 
This observation is borne out by the data in Table II, which shows that increasing the 
sample load increases the net throughput -regardless of the concomitant increase in 
the split peak fraction. The improvement in net throughput, however, is much less for 
larger values of f!I1 (line B in Fig. 3). 

CONCLUSIONS 

The theory of split peak chromatography under non-linear conditions has been 
discussed, and the behavior of split peaks over a wide variety of experimental 
conditions has been described. The computations pertain only to the case where mass 
transfer is fast relative to chemical sorption processes. While not ideal for making 
physico-chemical measurements, non-linear split peak theory may be useful in making 
separation design calculations -provided that the physical parameters of a chro- 
matographic system have been accurately measured by alternative means. Universal 
working curves and tabular data are presented which quantitatively describe how, for 
a specified split fraction, solute throughput may be optimized by adjusting the 
flow-rate and solute load to an optimal point. In maximizing solute throughput, it is 
advantageous to tolerate a greater split peak fraction, while adjusting operating 
parameters to the computed optimum. 

LIST OF SYMBOLS 

quantitity of solute injected in a very high, narrow pulse = C,( VP/V,); 
concentration of solute in the very narrow injection pulse; 
fraction of the solute mass eluting at the dead volume; 
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zeroth order Bessel function of the first kind; 
first order Bessel function of the first kind; 
equilibrium constant = k,/k,; 
thermodynamic capacity factor = KSoe; 
second order rate constant for chemical adsorption; 
first order rate constant for chemical desorption; 
concentration of solute on the stationary phase; 
concentration of active binding sites on the adsorbent surface. This is related 
to the surface coverage by6: 

AOws 

so = (1 - Er) 
where A0 is the surface coverage of sites (mol/m*), p is the density of the 
adsorbent, a, is the specific surface area, and &r is the total porosity of the 
adsorbent6; 
Bessel function integral which varies between zero and unity. Evaluation of 
this function is discussed in ref. 6; 
dead time of the column (passage time of an unretained solute which can, and 
does, explore the pores of the adsorbent); 
dimensionless throughput (eqn. 5); 
dead volume of the column; 
volume of the pulse injected onto the column; 
“shifted” time in dimensionless form = t/to - 1; 
dimensionless rate parameter = kdfO; 

porosity ratio = (1 - ~r)/~r; 
dimensionless capacity parameter for split peak work = kaSoEto; 
dimensionless loading parameter for split peak work = k,C,t,. 
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